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Abstract
Diagnosis systems for laser processing are being integrated into industry. However, their readiness level is still questionable
under the prism of the Industry’s 4.0 design principles for interoperability and intuitive technical assistance. This paper presents a
novel multifunctional, web-based, real-time quality diagnosis platform, in the context of a laser welding application, fused with
decision support, data visualization, storing, and post-processing functionalities. The platform’s core considers a quality assess-
ment module, based upon a three-stage method which utilizes feature extraction and machine learning techniques for weld defect
detection and quality prediction. A multisensorial configuration streams image data from the weld pool to the module in which a
statistical and geometrical method is applied for selecting the input features for the classificationmodel. A HiddenMarkovModel
is then used to fuse this information with earlier results for a decision to be made on the basis of maximum likelihood. The
outcome is fed through web services in a tailored User Interface. The platform’s operation has been validated with real data.
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1 Introduction

Laser material processing includes a set of non-conventional
machining [1] and joining methods [2] which have been well
established in modern manufacturing. Furthermore, new de-
velopments in recent years in additive manufacturing (AM)
[3] and micro/nano fabrication [4] have enabled new capabil-
ities that lasers can bring to the manufacturing industry. As
such, and with zero-defect manufacturing (ZDM) in mind,
wrapping these processes with the appropriate infrastructure
and tools for monitoring, quality diagnosis, and adaptive con-
trol [5] is of utmost importance. This way, the processes and
the systems will be able to harmonize with the requirements of
Industry 4.0, as depicted in the Fig. 1.

Monitoring and quality control systems are critical and
necessary tools in order for production results to be kept in

desired boundaries [6] and be able to deal with changing con-
ditions without requiring a complex and time-consuming
manual setup. In this regard, systems for monitoring of
Laser AM and 3D printing processes based on X-ray imaging
have been developed allowing the exploitation of novel pro-
cess insights [7, 8]. Furthermore, in the case of metal droplet
fusion processes, industrial computer tomography scanning is
utilized for defect identification of the fabricated parts [9, 10].
Moving to laser welding (LW) applications, monitoring sys-
tems utilizing machine learning (ML) technologies are achiev-
ing knowledge extraction towards control improvement of the
process [11, 12].

However, taking into account today’s paradigm of the
smart factory (under the prism of Industry 4.0) [13], not
only does it itself ask for machines with processing, com-
munication, and cognitive capabilities but also for machine
to machine interaction and communication, as well as the
interplay of humans and technology. Within the framework
of modular approach, it is noted that several attempts have
been made on the development of software tools with ded-
icated interfaces for process modeling [14, 15] and moni-
toring, knowledge extraction, cognitive quality control
[16], machine state monitoring, and user communication,
in a non-unified way and with limited actual results in laser
processing applications [17].
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Systems and methods for quality assessment based on ma-
chine learning techniques regarding laser welding processes
have been introduced lately [6]. In [18], the authors utilized
Principal Components Analysis (PCA) and Neural Networks
and were able to predict the weld appearance in real time and
thus assessing its quality. Support Vector Machines (SVM)
and Convolutional Neural Networks are incorporated in [19]
for predicting the quality of the welds in hairpin windings
based on images emerged from a CCD camera, achieving
remarkable performances, while in [20], a data-driven ap-
proach for predicting geometrical features and detecting de-
fects is introduced reaching high-accuracy results with a small
amount of observations.

However, despite the fact that the performance regarding
the prediction/detection capabilities of these approaches is
substantial, their error management capacity could be consid-
ered to be controversial. Therefore, the current study presents
a web-based quality diagnosis platform for laser processing
and mainly for welding and Additive Manufacturing (AM)
applications, based on a 3-Stage Quality Assessment
(3SQA) method. It incorporates feature extraction and ma-
chine learning (ML) techniques for defect classification and
weld quality prediction. An extra requirement would be to
manipulate and handle uncertainty introduced by the agnostic
nature of new measurements and the variability in properties
of material batches. This is achieved through the integration of
the third step, that of hidden Markov models. Also, through
the integration of a unified algorithm, the platform can mon-
itor the melt-pool evolution, extract key features for classifi-
cation and prediction, decide on the overall part quality, and
boost decision making for process optimization in general,
receive information on the machine and process parameters
status, and provide the user with guidelines.

The reminder of this paper is organized as follows.
Section 2 introduces the general application framework in
which the platform is realized and developed along with the
sensor systems that are involved. A systemic design of the
platform’s top-level architecture is also presented. The next

section provides a detailed description of the feature extraction
and classification algorithms. The platform’s development
and implementation are presented in Section 4. A discussion
is performed in the last two sections on the results of the
quality assessment and feature extraction algorithms and on
the benefits of such a development in monitoring and control-
ling of complex laser processes. The concept of integration
into the cognitive factory of the future is also discussed, while
an outlook for the future is also provided.

2 Laser welding cyber-physical system
and platform architecture

In this paper, a unified, web-based, quality diagnosis platform
is presented. The corresponding method for quality assess-
ment and feature extraction is also given. The concept of
Cyber-Physical Systems (CPS) [21, 22] was adopted to this
end, to describe the current approach within the context of a
laser welding application. As shown in Fig. 2, the classifica-
tion of the system components (in order of appearance 1–5)
includes the process itself, the emissions capturing, the data
generation, the data processing unit, and finally, the data trans-
mission module.

Laser welding, in particular, offers many application sce-
narios in industrial environments. However, weld quality is
affected by numerous process variables. It is also affected by a
plethora of additional factors related with the ambient condi-
tions and the material characteristics, namely, the variability in
the material properties within and across batches of stock ma-
terial. Consequently, to achieve precise and real-time weld
quality diagnosis and performing control optimization [6], it
would be essential to enhance the existing monitoring and
sensing schemas. In this case, an inline process monitoring
setup, as depicted in Fig. 2, has been used, based on two
cameras.

To move on to the architecture, each one of the sensors
publishes the data acquired through its IoT node accompanied

Fig. 1 Links between Industry 4.0 and ZDM
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by a timestamp allowing the real-time recording of the data
accurately referenced to a specific part point as described in
[23, 24]. “Real-time” is referring to the sum of processing time
and exposure time of the camera as they described in the
sections below. The processing time, although it is negligible
for this study, however, in some cases, it may be increased
based on the running path of the Viterbi algorithm as de-
scribed in the corresponding section. Nonetheless, this has
been checked herein that the overall time does not exceed
process cycle time (defined as processing time of one weld).

Camera-based monitoring allows the spatial resolved ob-
servation of the emitted keyhole and weld pool radiation [25].
A CMOS Near Infrared (NIR) camera (XIRIS XVC-1000e)
was used to gather high-resolution images of the keyhole and
its surrounding area with an exposure time of 80 μs, a frame
rate of 30 fps, and a spectral range up to 1500 nm. For weld
pool monitoring, a Mid-Wave Infrared (MWIR) PbSe sensor-
based camera (NIT Tachyon 1024microCORE) was engaged,
since the maximum spectral radiant exitance [26] derived
from the Plank’s law at the material’s melting point lies within
the sensor’s sensitivity (1 μm–5 μm). Image acquisition for
this system was carried out using 500 μs exposure time, a
frame rate of 1000 fps, and with a bias setting of 2.5 V.
Both cameras register image data with a bit depth of 10-bits.
In addition, to suppress chromatic aberration as a result of
coaxial integration concept, narrow bandpass filters were
aligned in front of the sensors.

To create a comprehensive quality diagnosis platform that
fulfills the requirements of industrial needs, the following
components were used. This way, reliability, real-time-capa-
bilities, and high availability can be achieved:

& Intuitive Human Machine Interface (HMI).
& Real-time process monitoring and quality diagnosis.
& Interfaces for high integrate ability and interoperability.

To this end, the top-level architecture of the proposed qual-
ity diagnosis platform (Fig. 3) is structured into a back-end

and a front-end component. The sensor’s and LW machine’s
data are fed to a server system in which they are pre-processed
and then distributed accordingly to two interconnected appli-
cations namely Human Machine Interface (HMI) and 3-Stage
Quality Assessment (3SQA), which are paired with a database
element. The HMI application is offering visualization, pro-
cessing, and quality assessment functionalities that are partial-
ly supported from the 3SQA application. The User Interface
(UI) is located on the platform’s front-end, enabling the afore-
mentioned features for the users.

3 3-Stage quality assessment method

Due to the statistical nature of process dynamics and the cha-
otic keyhole behavior [14], physics modeling is not able to
predict completely the behavior of the process. Thus, in order
to study the underlying complicated relationships between
process parameters, performance indicators, and other in-
volved variables [16, 27] affecting the formation of defects,
it is important to use additional techniques. This paper pro-
poses a 3-Stage Quality Assessment (3SQA) method based on
machine learning techniques to allow for an algorithm that is
able to capture the complex relations between various mea-
surements and defects [28]. Defect detection is achieved indi-
rectly meaning that there is not an intuitive and physics-based
procedure involved, but instead their prediction is made blind-
ly for each frame individually by involving the thermal im-
age’s features. This is achieved through utilizing a Machine
Learning (ML) model with a given quality label for each
frame. Following this, another ML algorithm handles the
overall decision for the quality of the seam, covering this
way the temporal variations of the process.

During the first stage (Fig. 4), the most important features
are extracted from the incoming image data utilizing a PCA-
based algorithm combined with a Geometrical Feature
Extraction (GFE) method. The output data are fed to the sec-
ond stage, which consists of a classification model for the

Fig. 2 A CPS for LW
applications
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quality assessment of each frame. However, a decision on the
overall quality evaluation of each stitch is required. Therefore,
in the third stage, the authors have used statistical models
(namely a Hidden Markov Model) aiming to deduce the over-
all quality of each stich.

It is important to mention that the generic framework for
decision making (not limited to process level) can also be
described through Dynamic Network Models [29]. Here, a
decomposition of such a model, in three stages, is attempted
to capture the details of process physics and to identify and
predict uncertainties. These uncertainties are due to material
impurities, process parameter variations, and even mechanical
configuration errors [12].

The development and initial implementation of the afore-
mentioned algorithms were carried out initially using

MATLAB and real-image data obtained from [30]. Later on,
these algorithms were implemented in Python using the scikit-
learn library and enhanced with additional features in order to
be able to handle real-time data streams. This way, it is also
possible to reconfigure them and deploy them into the server
system. The following subsections present the top-level struc-
ture of the feature extraction and classification methods which
compose the 3SQA algorithm.

3.1 Feature extraction

Utilizing all pixels of the MWIR-camera leads to a total
amount of 1024 features. The same applies to the output im-
ages of the high-resolution NIR-camera, 1,416,960 features
per time step, configuring a high-dimensional vector not

Fig. 3 Platform top level
architecture

Fig. 4 3-Stage Quality Assessment method and web-based platform. GFE: Geometric Feature Extraction, PCA, Principal Components Analysis, SVM:
Support Vectors Machine, HMM: Hidden Markov Model
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viable for the processing pipeline. Within this paper, two dif-
ferent approaches were followed for feature extraction from
the incoming image data. In the first one, a self-developed
image processing algorithm was created aiming to extract
geometrical features of the melt pool’s temperature field.
However, due to the high-dimensionality problem, another
algorithm was also developed based on the PCA [31] method.
The outputs of these algorithms were merged and passed to
the second stage. It is worth mentioning that PCA can be
retrained and extended, if needed, for very specific conditions,
leading to an extra contribution to management of the uncer-
tainty coming from the process.

3.1.1 Geometrical Feature Extraction (GFE) algorithm

In order to describe the geometry of the weld pool area, a
threshold-based contour extraction was applied on images de-
rived from the MWIR camera. This algorithm has been based
on extraction of the first- and second-order moments of the
thermal image, which was considered as a rigid body. The
steps of the algorithm are listed below:

& Read images in matrix format
& Apply a filter, differentiating the temperature in space
& Identify the center of the melt-pool through the moment of

first order
& Extract the moment of second order
& Compare them with those the ideal temperature field
& Identify position
& Repeat for bigger defects and different locations within the

field.

The standard deviation and the mean value, as moments,
around the melt-pool center [16], can help indicating the ex-
istence, the size, and the position of the defect, when compar-
ing to the case of different defect classes to that of the ideal
specimen. As far as the filtering method followed for the pur-
poses of this work is concerned, the spatial differentiation is
used to enhance the differences in the variation of the captured
thermal field in the presence of a defect. This step, however, is
optional as it may also amplify noise in the measurements. A
notch filter could then be applied [32] to isolate this variation.
This procedure in total would allow the discretization of the
image in smaller pieces, due to the identification of the tem-
perature field’s variance, leading to indications of the defect’s
existence and the mean filtered radiation field, which will
provide information on the relevant size of the detected de-
fects. It is worth mentioning that in order for the sensitivity of
the proposed image processing techniques to be examined,
different kinds of data sources were tested, implying different
defects and sizes. Thus, pores/cracks were tested (Figs. 11, 12,
13 and 14) at various locations and different sizes and it was
numerically proved that the method showed satisfactory

results for defects formed up to 2 mm in depth, which in most
of the laser welding applications, is more than adequate. In
addition, the method with some alterations worked for the
smallest observed pores, but the filters applied led to more
noise in the signal and thus, more calculating time.

3.1.2 Statistical Feature Extraction (SFE) algorithm

In many problems of this kind and especially in multispectral
sensory systems [33], the measured data vectors are high-di-
mensional, but it is generally perceived that the data lie near a
lower-dimensional manifold [31]. In other words, it may be
commonly accepted that high-dimensional data are multiple,
indirect measurements of an underlying source, which typi-
cally cannot be directly measured. Learning a suitable low-
dimensional manifold from high-dimensional data is essen-
tially the same as learning this underlying source [31].
Therefore, in the specific approach, a PCA algorithm has been
developed and implemented aiming to keep only important
pixels of the images (MWIR, NIR) before feeding the classi-
fier. The steps are cited below:

& Read the experimental data
& Determine the size of the datasets
& Calculate the sample mean and standard deviations

vectors
& Standardize the data (centering and scaling of the data)
& Derive Covariance Matrix
& Compute the eigenvectors and eigen values
& Transform the data
& Derive the required components based on a cumulative

variance threshold.

PCA is a useful mechanism for automated feature extrac-
tions, keeping at the same time the complexity of the algo-
rithm at feasible levels since the idea behind it is rather simple
and is based on covariance of the values of the pixels.

3.2 Quality assessment models

3.2.1 Support vector machines (SVM)

As it is highlighted above, the second stage of the proposed
method is the development of the defect classification model
and the prediction of the new part quality. After the dimen-
sional reduction, several machine learning algorithms have
been tested to classify the real experimental data. The main
target has been the use of the quality labeled trials that would
enable the algorithm to predict any welding defect. Thus, a
supervised classification and prediction method had to be im-
plemented. A plethora of welding trials were characterized in
detail, based on the observed defects with quality labels (e.g.,
O.K., lack of fusion, porosity, no seam [34]). The decision on
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the frame’s quality was made based on crystallography
methods as a part of the physical labeling process of the
seam’s regions. Optical inspection was also incorporated
where it was feasible while the threshold for single defect
can be derived based on literature [35].

Given the fact that more than one class can be utilized [6],
the decision on the frame being good or bad (“GOOD” &
“NOT GOOD”) can be also made via a simple de-
fuzzification rule, shown in the table below (Table 1) for
two sub-classes. For instance, what is considered hereafter is
penetration with confidence p1 and porosity confidence p2.
Confidence has to do with the probability of the frame quality
being the same with the criterion quality. In the table below, in
case 1, both criteria indicate a relatively good frame quality,
with confidence p values close to 1. In case 2, both criteria
indicate a relatively bad frame quality, with confidence p-
values close to 1. In cases 3 and 4, the first and second criteria
give out relatively bad frame quality, respectively. This leads
to the adoption of the following fusion functions.

It can be concluded that a support vector machine with
linear kernel gives relatively good results with respect to clas-
sification success rate. The support vector machine (SVM) is a
supervised machine learning algorithm, which can be used for
both classification and regression challenges [6]. It is used to

identify a boundary of specific geometry between two or more
classes.

3.2.2 Hidden Markov Models (HMM)

In general, Hidden Markov Models are a class of decision-
making tools that assist in capturing the uncertainty in deci-
sion making. Herein, they are used to consider uncertainties as
per the ways that have been aforementioned. The Maximum
Likelihood criterion is utilized to assess the quality of a stitch,
considering previous measurements as well as previous
frames.

The conditional probability of this stitch to be by far so bad
(event Bn), given the facts that:

& PreviousM frames (out ofN-1) have a known status (good
or bad), based on the SVM classification (event FM), 2)

& Previous N stitches are good/bad, based on HMM classi-
fication (events P)

& The process parameters used are X, based on the machine
readings (event Xn).

Therefore, the probability that we are interested in it is
given by Bayes’ theorem P(Bn | FMPXn) P(FMPXn) =
P(FMPXn | Gn) P(Gn). The probability P(Gn) can be easily
calculated through the total probability law, whilst both
P(FMPXn) as well as P(FMPXn | Gn) can be measured easily.
The definition of the HMM has beenmade this way so that the
experiments required for the calculations of these probabilities
will be easier. The overall Hidden MarkovModel for both the
simple and the multi-class cases can be seen in Fig. 5.With the
help of a Trellis diagram, the maximum likelihood path can be

Table 1 De-fuzzification rules for quality decision in over one classes

Case Fusion formula Confidence (fusion) function with strict policy

1 p1p2 min{p1,p2, p1, p2}

2 (1 − p1)(1 − p2) min{(1 − p1)(1 − p2), (1 − p1), (1 − p2)}
3 p1(1 − p2) ..

4 (1 − p1)p2 ..

Fig. 5 Hidden Markov Model states and hidden layers
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identified. The Viterbi algorithm has been utilized for the es-
timation of the path [36] (Fig. 6).

4 Platform development and implementation

As a web-based platform, its implementation has been struc-
tured on a server-client-side logic that would display the re-
quired information on a website and also be optimized for the
use of mobile devices. Thus, the quality diagnosis platform
architecture was configured as depicted in Fig. 3. The back-
end component is hosted by a server system and received the
data streams from the image sensors which are fed to the pre-
processing module. The pre-processed image data are then
distributed in real time to the HMI, Database, and Quality
Assessment module for visualization, processing, and storage
tasks. Bidirectional data exchanges between these modules
were established, either to transmit the image data or support
cross-sectional functionalities. On the other hand, the front-
end component communicating with the web server allows
the establishment of an intuitive web-based interface with
the user and the HMI application. The source of the data (real
machine or Database) highly depends on the use (visualiza-
tion/assessment or training, respectively).

4.1 Platform requirements

Prior to the implementation, the users’ and the system’s re-
quirements had to be identified. The user requirements were
extracted based on the information that should be available for
the process, whilst similar user-interfaces were developed for
other applications [37–39]. From a user point of view, two (2)
categories/types that could interact with the platform, each one
of them having access specific areas of the collaborative
workspace were identified:

& “Workstation Operator” user type, including operators of
different type of machines or robots used for a specific
task in the production line of a specific product.

& “Shift Manager” user type, including production and qual-
ity engineers responsible for a specific batch of products
or for the plant.

Thus, the user requirements were extracted based on the
information that should be available from the process and the
different aspects that should concern each type of user. The
main requirements are provided below:

& Human-machine interaction for real-time monitoring of
the process while having access to previous manufactur-
ing sessions of the same type of part.

& Communication and collaboration among operators of the
same production line to report quality issues to the next

Fig. 6 ML path occurring form
Viterbi algorithm applied on a
HMM

Fig. 7 Web-based platform’s functionalities (logging-in)
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workstation operator. The capability to be alerted for
existing quality issues may lead the operator to minor
adjustments on the process parameters to minimize the
defect, achieving a high-level quality of the end-part.

& Support for the structuring of decisions and evaluations
based on archived process data, regarding machine state
and quality issues.

& Analysis of data retrieved during the process to provide
insights regarding the type of quality issue, the
workstation/part where the most failures occurred, and
information regarding the process status when quality is-
sues appeared.

& Communication and collaboration between engineers and
operators for overcoming quality issues and offer direct
recommendations based on analyzed data.

& Recommendations on process parameter alterations and
classification model retraining capabilities.

On the other hand, system requirements were obtained
from the possible monitoring hardware, the architecture of
the platform as it is analyzed in previous section, and by the
laser processing needs. Therefore, the 3SQA method’s algo-
rithms were implemented into Python scripts Common
Gateway Interface (CGI) and paired with the appropriate
API to enable their utilization from the rest of the back-end’s
components. A database system using the HDF5 file format
(Hierarchical Data Format version 5) was developed along
with a dedicated script for synchronizing, archiving, and read-
ing operations of large amounts of data, in order to reduce the
volume and exchange time of critical tasks [14, 21]. The last

Fig. 8 Web-based platform’s
functionalities (real-time)

Fig. 9 Web-based platform’s
functionalities (post-process)
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element of the platform’s back-end is the HMI application
which is hosted on anApache Tomcat 7.0 web server, offering
functionality to tasks related with data visualization, process-
ing, and data management. For the web framework, the
Bootstrap v3.3.7 library was utilized enabling the creation of
the UI for different types of devices.

4.2 HMI functionalities

Based on the system and user requirements obtained prior the
implementation of the platform, the HMI’s functionalities
were also identified. The main functions which were incorpo-
rated in the web application are provided below:

& User roles management: The related functionality enables
the management on the privileges and access rights of
every user to the platform. Different types of users can
obtain different rights based on their specific attributes,

experience, and position they hold. These are activated
during logging in (Fig. 7)

& Real-time monitoring: This function is provided through
the interaction with quality assessment software module.
The platform displays melt pool evolution data, machine
and process status, processed stitch, feature evolution, and
quality labels for each frame (Fig. 8).

& Data post processing and feedback: The third function
offers to the user the capability to load information of
welds occurred in previous products/stitches while a
visible assessment can be performed providing feed-
back and retraining the classification model. In addi-
tion, the profile of each stitch, the quality color code,
the features plot, and the defect counter are also incor-
porated and visualized. The stitch profile allows the
operators to obtain conclusions for any critical defect
such as lack of fusion and burnt areas. Such screens are
demonstrated in Fig. 9.

Fig. 10 Cracks identification based on variance

Fig. 11 Cracks size identification

Fig. 12 Identification of pores based on variance

Fig. 13 Pores position detection
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5 Results & discussion

Using the developed feature extraction algorithms, one can
derive interesting results regarding the defect’s identification.
As depicted in Fig. 10, almost all the defects can be identified
and show differences with the ideal thermal field. The method
is only hindered by the vertical (coaxial to camera) cracks.
However, this is depending on the crack’s size with the bigger
ones to be as identifiable as the rest. On the other hand, Fig. 11
demonstrates that the Geometrical Feature Extraction algo-
rithm can predict and visualize the difference in the size of
the cracks while the numerical value can be a future threshold
for accepting or rejecting the monitored weld.

As far as it concerns the results related to the weld porosity,
the Geometrical Feature Extraction algorithm can successfully

identify its existence as presented in Fig. 12 as well as the
position of the defects in relation to the center of laser beam
as can also be detected in Fig. 13. Finally, in Fig. 14, the size
identification capabilities of the algorithm can be seen.

For the prediction of the quality of parts, labeled measure-
ments (images) were acquired [30], aiming to calculate the
features of each frame, use the SVM classifier to predict the
welding quality, and validate the method’s capacity to ade-
quately work with new measurements. In this regard, the lin-
ear SVM was trained utilizing the “soft-margin optimization”
formulation [40], with two welding data sets and the outcome
of the prediction for a new trial can be achieved for each
frame, labeled by the algorithm. It was observed that by using
ten (10) principle components (Fig. 15) along with the two
Geometrical Moments derived from the Geometrical Feature
Extraction algorithm, quality prediction accuracy of 92%, on
training and test data, was achieved. Afterwards, the same
procedure was applied to more experimental trials for the pre-
diction of the quality state of the two classes. The results of the
classification are evident in Fig. 16 where specific centers of
clusters are given for the sake of illustration.

Considering the platform’s UI/HMI functionalities, as de-
scribed briefly in the previous section, the quality assessment
module along with statistical calculations introduced a num-
ber of operations to be integrated. In this regard, as depicted in
Fig. 8, the maximum (Max), minimum (Min),Mean, Kurtosis,
and Variance were calculated and plotted for each of the in-
coming image frames in real time. In addition, the
Geometrical Feature Extraction algorithm’s defect identifica-
tion and characterization capabilities, as mentioned in the pre-
vious paragraphs, introduce quality labels along the seam
(Seam OK, Porosity, Seam width exceeded, lack of

Fig. 15 Cumulative sum of principal components

Fig. 14 Porous size defect identification
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penetration, Gap too high). Finally, the overall seam quality
was presented with a binary type indicator (“OK”, “NOK”) by
engaging the complete quality assessment module. The same
functionalities were introduced also in case of the post-
processing elaboration mode (Fig. 9).

Concluding from aforementioned results, the mechanism
which the defect’s development is based upon, as well as their
correlation with the process’s emission, is fairly complex and
not entirely deterministic and thus, the selection ofMLmodels
for predict/classify defects was made at the first place. These
models have the advantage of built in error terms, where big
amount of data is used to fit the model’s parameters based on
its input-output response, offering error quantification and
confident levels under significant lower computational re-
quirements during their real-time utilization. The time refer-
ences of the input and output variables are not bounded to
single moment thus introducing prediction characteristic to
the model. Nevertheless, defects occurring later, i.e., during
cool down phase have not been taken into consideration and
would require post-processing monitoring. However, the
HMM algorithm could be elaborated to this end.

6 Conclusions and future work

In this paper, a novel web-based quality diagnosis platform
has been presented. The lack of unified tools that are able to
receive, process, and share quality data, is addressed through
the proposed platform. The platform integrates a unified fea-
ture extraction, quality prediction, and decision-making algo-
rithm by visualizing crucial aspects of laser processes that
enable the operator’s feedback to the system. The current
study regards the Laser Welding case; however, the platform
can be easily adapted to accommodate the monitoring imaging
systems of other applications, besides any training and

validation, as mentioned in [7–10] extending by these means
the cognitive capacity of the platform, such as additive
manufacturing/laser metal deposition and cutting.

The algorithm and the platform’s performance have been
locally validated with real data. The connection of the plat-
form with the real monitoring system as well as a feasibility
case for another laser process are the next steps to be under-
taken by the authors to fully demonstrate the cognitive and
networked capabilities of such a tool, in today’s production,
aligned with the Industry 4.0 paradigm.

Challenges for the future, as isolated from the workflow
above, include the fusion with other sensors (either mathemat-
ically or per use), the adaptive & robust control of the process
which requires estimation of thermal field evolution within the
part, dissimilar joining and respective metrics extraction, as
well as adaptation of the current work-flow within a digital
twin for more advanced functionalities.
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