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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Digital twins can be very promising towards offering agility and resilience in manufacturing. Especially at process level, the adaptability and the 
real-time optimization they can bring along is highly desired. However, digital twins, being the outcome of severe systems integration are difficult 
to be designed and be implemented integrating all the desired functions, such as process control and quality assessment. This work investigates 
the opportunity to integrate different models under the concept of a digital twin of a manufacturing process (namely LPBF) and be able to meet 
diverse requirements, such as adaptivity, real-time optimization and uncertainty management. The suggested framework takes into account all 
the phases of the digital twin, such as sensorization, modelling, diagnostic and prognostic functions and puts together an architecture including 
all available models and thus paving the way towards achieving to meet all the requirements. A case study is also presented showing the 
capabilities of the partial models utilized as well as the performance of the digital twin in closed-loop control. The digital twin is proved to be 
highly feasible and appears to have good performance indicators. 
 
© 2021 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile 
manufacturing and service operations : Lessons from COVID-19 (CIRPe 2021) 

 Keywords: Digital Twin; Manufacturing Resilience; Surrogate Models; LPBF 

 
1. Introduction 

The concepts of resilience, agility and resiliency (A&R) [1–
3] are well discussed in literature and are linked to the way the 
changes can be predicted, avoided and absorbed. Thus they are 
systemic terms, closely related to control and stability [4], as 
these are prerequisites towards achieving A&R. So, there are 
repercussions for both Design and Operation of a 
manufacturing system and of a manufacturing process in 
particular, because specific objectives have to be able to be met; 
namely the First-time-right [5] is a valuable objective, then the 
concept of flexibility [6] as well as the concept of quality [7]. 

A digital twin (DT), on the other hand, being an emerging 
concept potentially integrating numerous key enabling 
technologies ranging from monitoring, control, IoT, ICTs and 
surrogate models [8], could boost the design and the operation 
of manufacturing process. The DT aims (as per the adopted 
definition [9]) at the real-time manipulation of Key 
Performance Indicators (KPIs) through utilizing virtual (digital) 
entities; high-fidelity simulations and high-knowledge 
databases for instant decision-making.  

Recently, there has been an interest on the Digital Twin 
performance of thermal manufacturing processes such as laser-
welding and laser-based additive manufacturing (AM). The  
performance of AM process has been investigated through 
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robust control design [10], while the laser-welding case has 
been regarded [11] for studying the process control efficiency 
under the cryptographic delays.  

As aforementioned, DT relies on the real-time execution of 
simulations. The key enabler in that case, is the surrogate 
models (SMs). The SMs in reality constitute an approximation 
to the actual results of the simulations. A comprehensive 
investigation of the potential roles of SMs in the DT concept is 
conducted by Bárkányi et al. [12]. The simulations are mainly 
formulated with the help of finite element method [10], finite 
difference [13], level set method, volume of fluid method, and 
lattice Boltzmann method [14]. SMs can be divided into 
reduced order model (ROMs) [15], data-driven methods 
(DDMs) [16], hybrid modelling (HMs) [17], meshfree methods 
[18] and more recent method of physics-informed neural 
network (PINNs) [19]. Stathatos and Vosniakos [20] have 
developed artificial neural networks with arbitrary paths in a 
thin powder layer and fixed process parameters (power and scan 
speed). The same authors continue the implementation of a 
feedforward control scheme in line with the SM [21].  

However, with the DT inevitably being a result of severe 
integration [22], due to its multifold character, a specific 
framework has to be set up towards a DT being implementable. 
This work describes the framework and tests its functionality in 
the context of laser based processes and LPBF in particular, 
under the scope of achieving A&R. 

2. A theoretical framework for designing the Digital Twin 

As indicated in Figure 1, the aspects of digital twin in 
literature form a rather complicated mapping with respect to its 
architecture. As a matter of fact, it has been stated explicitly that 
the digital twin is an outcome of severe systems integration 
[22]. 

 

Figure 1.  Digital twin and related concepts based on literature [22–27] 

Mathematically, it is a design problem that can be modelled 
in a rather complicated way (provided that it can be formulated 
and it is a well posed problem), however, its solution seems to 
be even more difficult. The main difficulty in the 
implementation is addressing the real-time character that it 
ought to have, especially regarding manufacturing processes 
optimization. Simultaneously, it has to be interoperable enough 
with respect to data transmission. Specifically, the state of the 

physical (real) system (RS) and the structure of the digital twin 
structure (DTS) can be abstractly defined by the sets: 

RS=(Process Parameters, Performance Indicators, 
Intermediate Variables, Actuators) 

DTS=(Model M, sensors S, Controller C, Architecture A) 
It is noted that this is not an strict mathematical definition, 

as the involved sets are not necessarily quantifiable. Then, after 
some detailed definitions are given and the search space for 
each one of the aforementioned entities is set, a target T could 
be defined for the problem of designing the digital twin, such 
as the one provided in Eq. 1, provided that 𝑥̃𝑥(t) is the response 
of the real system and 𝑦̃𝑦(t) is the response of the digital twin. 
Both of them are functions of time. Also, all the situations, such 
as the ones characterized by the ensemble of process 
parameters, are annotated with the letter W. 

𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆)𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡,𝑊𝑊(𝑥̃𝑥(𝑡𝑡) − 𝑦̃𝑦(𝑡𝑡))𝑇𝑇(𝑥̃𝑥(𝑡𝑡) − 𝑦̃𝑦(𝑡𝑡))   (1) 

This is a complex problem which also includes coupled 
parameters. Also, with many of the involved entities being 
described by categorical variables, such as the set of sensors 
(S), one needs to assign values and perform some kind of 
optimization. Thus it is a mixed problem, meaning that there 
are parameters that are discrete (i.e. alternative configurations 
of sensors) and other parameters that are continuous (i.e. time, 
or process parameters). Consequently, it would be highly 
interesting to study whether decoupling of the parameters and 
simplification would lead to a feasible methodology. 

So, to simplify the problem, the model, the sensors, the 
controller and the architecture will be selected independently of 
each other; the assumptions are shown below: 
 Data communication is taken for granted, while links to 

higher-level and machine-level functionalities 
(maintenance) are ignored 

 The digital twin is considered to be also a digital 
representation of the physical system (Figure 2) 

 Functionalities are considered to be mainly Process Control 
(Figure 3a) and no analytics or uncertainty management 
mechanisms are considered 

 The available models are Data Driven Models (empirical) 
and accelerated physics models offering flexibility, 
resilience and agility 

 The workflow is operated by a software called orchestrator 
Thus, only the connectivity is pending to be defined, which is 
also application-dependent. 

 

Figure 2.  Physical (left) and digital (right) systems with corresponding states 

In the next section, an example of an architecture is given, 
where the orchestrator has been reduced down to regulating a 
closed-loop scenario for temperature-tracking (process control) 
of LPBF 
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3. Implementation 

The Digital Twin architecture proposed in here attempts to 
address all the aforementioned challenges (Figure 3b). Thus, 
there are included: (a) a physics surrogate model that will allow 
the smooth installation in a new line (first-time-right), (b) a 
dummy data generator which will allow testing without 
compromising the production, (c) a Quality assessment 
monitoring, able to aggregated characteristics from machine 
learning and control output, (d) running a set of what-if-
scenarios boosting productivity and (e) the control generation 
which will generate the signals that will drive the machine 
actuators. It is noted that the control is able to integrate various 
criteria, such as KPIs tracking (as showcased here), robustness 
[10], energy efficiency [28] and others. 

Overall, the Digital Twin in AM design and process-level 
operation is mandatory to achieve high quality and defect-free 
production. Hence, an effective procedure has to be designed 
to keep in track the desired key performance indicators (KPIs). 
Besides, a DT targets on the: 
 Offline prediction of both KPIs and process parameters 

(PPs) 
 Online prediction of KPIs  
Thus, both forward and inverse models are required for proper 
functionality; the first ones guarantee the prediction of KPIs 
given the values of PPs, and the second ones are assigned with 
the exact opposite task. This research work adopts machine 
learning (ML) regression techniques and especially the 
recurrent neural networks (RNNs). The prediction models are 
developed through special forms of RNNs and namely the long 
short-term memory (LSTM), bidirectional LSTM (BiLSTM) 
and the gated recurrent units (GRUs) [29–31]. 

However, large datasets are required for the proper training 
of such algorithms. To this end, and under the spirit of making 
things first the first time, simulation results are utilized to pre-
train this. Uncertainties could be integrated [10] also extending 
the usability of the models. Furthermore, to guarantee a 
verisimilar character in the dummy data generator, integrating 
any variances in behavior or uncertainties to the response the 
digital twin retrieves during testing phase, AR-X models are 

used [32] that are able to integrate artificial uncertainty in their 
response. Finally, the Quality assessment module is 
augmentable through some if-then rules integrating the error of 
control and potential use of additional sensors [33]. Also, the 
uncertainty management mechanism, albeit neglected herein, 
can easily be integrated thanks to the closed loop control 
criteria. Regarding the orchestrator, it seems that its role has 
been limited to handling the data. It can even be a human-in-
the-loop workflow. 

4. Case study and Results 

Regarding the applicability of the current framework, a case 
study has been set up, with the help of a finite element method 
assumed for the single-track laser-powder bed fusion (LPBF) 
AM process as a reference model, while the vital process 
parameters have been considered to be the power and scan 
speed of the laser in that case. The dataset consists of 121 
different process parameters. A widely used material of Ti64, 
a Gaussian distribution as the heat source with a laser beam 
diameter at 100μm and a layer thickness at 30μm are assumed 
in the simulation for reasons of simplicity. The design space of 
process parameters is shown in Figure 4. The ranges take into 
account the process window of Ti64 for high-density parts.  

The following subsections are utilized to study the 
performance of the partial models. More specifically, 
subsection 4.1 deals with the performance of the forward 
models predicting the (static) values of KPIs given the PPs, 
subsection 4.2 deals with the performance of the inverse 
models and subsection 4.3 presents the performance of the 
surrogate models predicting the evolution of temperature, 
given the profile of the PPs in time. Subsection 4.4 is about 
testing the performance of the overall DT.  

 
4.1 Digital Twin Forward Design (DT FR) 

The AM workflow for the selection of process parameters 
(PPs) is usually driven by the AM engineer, who takes into 
account the melting material, the pre-heating temperature, the 
process window of selected material and approximately other 
50 in total parameters. Herein, the two key process parameters 
that have been selected for the DT-FR are the laser power and 

Figure 3. Simplified list of aspects of a digital twin (a) and the proposed 
digital twin architecture (b) 
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the scan speed and the targeting KPIs are considered to be the 
peak temperature and the melt-pool lateral dimension (length), 
estimated by two separate artificial NNs (ANNs). 

 

Figure 4.  Process parameters space 

The ANN characteristics for both aforementioned cases are: 
two layers, eight hidden neurons per layer, a ratio of 80-10-10 
for the training, validation and testing phase, and resilient 
backpropagation algorithm (Rprop). The extracted KPIs are 
extracted as values from the simulations (121 sets of Fig. 4 
times the configurations of the final temperature). The process 
parameters of the design space are imported as inputs to the 
DT-FR then KPIs (temperature or melt-pool length) are 
predicted, as shown in Fig. 5. 

 
4.2 Digital Twin Inverse Design 

A second ANN is trained using as inputs the predicted KPIs 
and as outputs the PPs, aka inverse design (DT-INV) where the 
operator can select the desired KPI and the algorithm can return 
the appropriate machine parameters for the initialization and 
also in-process level. For the validation of inverse design 
methodology, ten values of the desired KPI (i.e. melt-pool 
length) are selected ranging from 0.2 to 0.7 mm where the DT-
INV returns the process parameters and imports them to the 
initial simulation model with the same settings. Fig. 6 depicts 
the difference between the desired and the actual KPI with the 
maximum absolute error reaching at 14.7% at the 9th design 
point (DP). It can be illustrated that the differences appeared in 
DPs 8-10 are the only ones that are relatively high, in 
comparison with the case of DPs1-7, due to the training ranges. 
This issue can be resolved with more time-consuming 
simulations resulting to a considerable dataset. 

 

Figure 5. KPIs prediction 

 

Figure 6. Inverse prediction of process parameters for the desired KPI: melt-
pool length 

4.3 Real-time Prediction 

The DT-AM module is developed herein for the in-layer 
process level, resulting to the correlation of Virtual Twin (VT) 
(aka surrogate model) and the Physical Twin. This is the case 
where the whole response of the physical system is predicted, 
in terms of a time-series. Hence, the VT considers the 
temperature prediction at selected nodal coordinates) with an 
investigation of highly efficient DL algorithms (LSTM, 
BiLSTM, GRU) 

The training procedure of the models that are used as a VT 
takes into account the ensemble of process parameters. After 
some trials with respect to the number of layers, the hidden 
nodes, the number of epochs and the learning rate, the resulted 
training parameters are shown in Table 1. There are upper 
limits for the total number of free parameters, as the overfitting 
is unwanted here. So, in order to decide on the meta-parameters 
of the model, a brief cross-validation procedure was used, 
taking into account also the fast convergence of the procedure 
as an extra criterion of accepting or rejecting alternatives. Extra 
alternative configurations for really small networks were also 
pre-excluded, as an ansatz, since the position of the sensor (in 
the case of nodal temperature prediction), the steady-state 
temperature value, as well as some artificial uncertainty in the 
responses were also diversifying factors. For the case of peak 
temperature evolution prediction, since it refers to a changing 
node since it is a monitoring problem, the case is slightly 
different and more neurons are required. As a matter of fact, 
the investigation of RNNs shows that LSTM achieved the 
highest accuracy. Hence, the next DT module for the peak 
temperature prediction, only a LSTM predictive model is 
developed. The number of hidden neurons is assumed 200, with 
a learning rate at 7e-3. The response of the predicted time-
series is shown in Fig. 11. The accuracy is relative acceptable 
for a modest dataset, and can predict efficient the actual peak 
KPI.  

Table 1 Training parameters 

 Nodal Temperature Prediction Peak 
Temperature 

Parameters/Model LSTM BiLSTM GRU LSTM 

Optimizer Adam Adam Adam Adam 
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Layers 1 1 1 1 

Hidden Nodes 128 128 128 200 

State Activation 
Function tanh tanh tanh tanh 

Gate Activation 
Function sigmoid sigmoid sigmoid sigmoid 

Epochs 50,000 50,000 50,000 20,000 

Learning Rate 1e-3 1e-3 1e-3 7e-3 

The testing of nine nodal temperature prediction is shown in 
Fig. 7 for all the developed algorithms. A close-up of the 
prediction in the case of the first node is depicted in Fig. 8. All 
three RNNs can successfully predict the response, however 
quantified methods have to be established. Therefore, the 
metric R-squared (R2 – Accuracy (%)) is adopted from 
regression analysis to compare the testing performance. The 
R2(%) values for each nodal position and for each RNN are 
presented in Figure 9, while the peak temperature prediction is 
depicted in Fig. 10. 

 

Figure 7. Prediction of nodal temperature 

 

Figure 8. Close-up of prediction on 1st node 

 

Figure 9. Accuracy of all the RNN models. R-Squared metric multiplied by 
100% 

 

Figure 10 Peak temperature prediction 

4.4 Closing the loop 

Finally, in Fig. 11, the implemented platform that acts as a 
digital twin is shown and the scenario of estimating the error 
between the digital twin and controlling the dummy data 
generation through a PID controller is shown. 

This workflow demonstrates the use of forward and inverse 
models (gauges on the left of the figure), the Digital Twin 
where the appropriate PPs are applied (Red line on the right), 
as well as the AR-X model, where a PID has been applied (blue 
line on the right).  

 

Figure 11. Applying process control through the Digital Twin 
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It is noted that the AR-X module, as a dummy data generator, 
as well as the controller have been modelled as individual and 
autonomous software modules and can be used even under the 
framework of cloud-control. 

5. Conclusions  

This research provides a roadmap for designing and 
implementing Digital Twins with respect to adding agility and 
resilience in manufacturing. Also, a particular architecture has 
been applied in AM-LPBF process, as a result of various 
models integration, integrating three different approaches, i) the 
forward predictive model where the process parameters, such 
as power and scan speed, are used to estimate the actual values 
of the pre-defined KPIs at the steady-state ii) the inverse 
predicted model where the operator selects the desired KPI 
value, such as melt-pool length in the current paper, and the 
algorithm provides the appropriate process parameters, iii) the 
real-time DT module where the process parameters can 
instantly predict both the nodal temperature response and the 
peak temperature.  

All the developed DT modules can be integrated into AM 
machines for near- or real-time prediction with the feedback 
from monitoring devices for the correlation of responses and 
the digital twin as a whole has been proved to be quite 
promising in terms of closed-loop control functionality.  
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